Investigation of Mixed Metal Oxide Bilayers in Photoelectrochemical Water Splitting: Synthesis and Functional Properties
DOI:
https://doi.org/10.55544/jrasb.4.1.20Keywords:
Photoelectrochemical (PEC), Metal Oxide, Water-splitting, Physical Vapor Deposition (PVD), Sol-gelAbstract
The global annual energy consumption indicates a pressing necessity to improve efficient renewable energy technologies. PEC water splitting represents a highly promising method for generating renewable energy through solar power. Recently, mixed metal oxide bilayered thin films have emerged as promising materials for PEC water splitting, due to their tunable optoelectronic behavior, enhanced charge separation, and improved stability of the films. This document offers an in-depth analysis of synthesis techniques, structural and functional properties, and the photocatalytic energy conversion efficiency of double-layer metal oxide materials, such as BaZrO3/Cu2O, SrTiO3/Cu2O, and SrTiO3/CeO2. The discussion subsequently centers on the latest advancements in material science, including selection processes, fabrication techniques, and improvements in PEC devices. The paper's final section outlines a series of challenges that could impact the effectiveness of these systems, along with potential solutions. Additionally, it discusses future inquiries that might enhance the applicability of these systems in large-scale hydrogen production.
Downloads
References
Gao, Q., Li, J., Liu, B., & Liu, C. (2022). In-situ synthesis of direct Z-scheme 2D/2D ZnIn2S4@CeO2 heterostructure toward enhanced photodegradation and Cr(VI) reduction. In Journal of Alloys and Compounds (Vol. 931, p. 167430). Elsevier BV. https://doi.org/10.1016/j.jallcom.2022.167430
Samuel, E., Joshi, B., Kim, M.-W., Swihart, M. T., & Yoon, S. S. (2020). Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting. In Nano Energy (Vol. 72, p. 104648). Elsevier BV. https://doi.org/10.1016/j.nanoen.2020.104648
Yang, Y., Niu, S., Han, D., Liu, T., Wang, G., & Li, Y. (2017). Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. In Advanced Energy Materials (Vol. 7, Issue 19). Wiley. https://doi.org/10.1002/aenm.201700555
Antončík, F., Lojka, M., Hlásek, T., Sedmidubský, D., Jankovský, O., & Bartůněk, V. (2020). The effective synthesis of large volumes of the ultrafine BaZrO3 nanoparticles. In Materials Chemistry and Physics (Vol. 259, p. 124047). Elsevier BV. https://doi.org/10.1016/j.matchemphys.2020.124047
Ikram, M., Rashid, M., Haider, A., Naz, S., Haider, J., Raza, A., Ansar, M. T., Uddin, M. K., Ali, N. M., Ahmed, S. S., Imran, M., Dilpazir, S., Khan, Q., & Maqbool, M. (2021). A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials [Review of A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials]. Sustainable Materials and Technologies, 30. Elsevier BV. https://doi.org/10.1016/j.susmat.2021.e00343
Jang, Y. J., & Lee, J. S. (2019). Photoelectrochemical Water Splitting with p‐Type Metal Oxide Semiconductor Photocathodes [Review of Photoelectrochemical Water Splitting with p‐Type Metal Oxide Semiconductor Photocathodes]. ChemSusChem, 12(9), 1835. Wiley. https://doi.org/10.1002/cssc.201802596
Pedro Migowski,Adriano F. Feil. (2016). Uses of Physical Vapor Deposition Processes in Photoelectrochemical Water Splitting Systems. https://repositorio.pucrs.br/dspace/bitstream/10923/20959/2/Uses_of_Physical_Vapor_Deposition_Processes_in_Photoelectrochemical_Water_Splitting_Systems.pdf
Wang, X., & Yushin, G. (2015). Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. In Energy & Environmental Science (Vol. 8, Issue 7, p. 1889). Royal Society of Chemistry. https://doi.org/10.1039/c5ee01254f
Pattnaik, A., Sahu, J. N., Poonia, A. K., & Ghosh, P. (2023). Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. In Process Safety and Environmental Protection (Vol. 190, p. 667). Elsevier BV. https://doi.org/10.1016/j.cherd.2023.01.014
Wang, B., Zhang, B., Zhong, S. P., Zheng, Z., Xu, P., & Zhang, H. (2020). Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. In Journal of Materials Chemistry C (Vol. 8, Issue 15, p. 4988). Royal Society of Chemistry. https://doi.org/10.1039/c9tc07098b
Klotz, D., Grave, D. A., & Rothschild, A. (2017). Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. In Physical Chemistry Chemical Physics (Vol. 19, Issue 31, p. 20383). Royal Society of Chemistry. https://doi.org/10.1039/c7cp02419c
Santbergen, R., Uzu, H., Yamamoto, K., & Zeman, M. (2019). Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells. In IEEE Journal of Photovoltaics (Vol. 9, Issue 2, p. 446). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/jphotov.2018.2888832
Ebnesajjad, S. (2011). Surface and Material Characterization Techniques. In Elsevier eBooks (p. 31). Elsevier BV. https://doi.org/10.1016/b978-1-4377-4461-3.10004-5
Pudkon, W., Bahruji, H., Miedziak, P. J., Davies, T. E., Morgan, D. J., Pattisson, S., Kaowphong, S., & Hutchings, G. J. (2020). Enhanced visible-light-driven photocatalytic H2 production and CrIJVI) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule- assisted microwave heating method†.
Wang, W., Xu, M., Xu, X., Zhou, W., & Shao, Z. (2019). Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting [Review of Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting]. Angewandte Chemie International Edition, 59(1), 136. Wiley. https://doi.org/10.1002/anie.201900292
Choudhary, S., Upadhyay, S., Kumar, P., Singh, N., Satsangi, V. R., Shrivastav, R., & Dass, S. (2012). Nanostructured bilayered thin films in photoelectrochemical water splitting – A review [Review of Nanostructured bilayered thin films in photoelectrochemical water splitting – A review]. International Journal of Hydrogen Energy, 37(24), 18713. Elsevier BV. https://doi.org/10.1016/j.ijhydene.2012.10.028
Krishnan, A., Swarnalal, A., Das, D., Krishnan, M., Saji, V. S., & Shibli, S. M. A. (2023). A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants [Review of A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants]. Journal of Environmental Sciences, 139, 389. Elsevier BV. https://doi.org/10.1016/j.jes.2023.02.051
Gawęda, S., Podborska, A., Macyk, W., & Szaciłowski, K. (2009). Nanoscale optoelectronic switches and logic devices [Review of Nanoscale optoelectronic switches and logic devices]. Nanoscale, 1(3), 299. Royal Society of Chemistry. https://doi.org/10.1039/b9nr00145j
Krishnan, A., Swarnalal, A., Das, D., Krishnan, M., Saji, V. S., & Shibli, S. M. A. (2023). A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants [Review of A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants]. Journal of Environmental Sciences, 139, 389. Elsevier BV. https://doi.org/10.1016/j.jes.2023.02.051
Li, Y., Tan, X., Hocking, R. K., Bo, X., Ren, H., Johannessen, B., Smith, S. C., & Zhao, C. (2020). Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. In Nature Communications (Vol. 11, Issue 1). Nature Portfolio. https://doi.org/10.1038/s41467-020-16554-5
Li, H., Guo, J., Li, Z., & Wang, J. (2023). Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water [Review of Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water]. Molecules, 28(13), 5010. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules28135010
Pudkon, W., Bahruji, H., Miedziak, P. J., Davies, T. E., Morgan, D. J., Pattisson, S., Kaowphong, S., & Hutchings, G. J. (2020). Enhanced visible-light-driven photocatalytic H2 production and CrIJVI) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule- assisted microwave heating method†.
Baade, P., & Wood, V. (2021). Ultra-high throughput manufacturing method for composite solid-state electrolytes. In iScience (Vol. 24, Issue 2, p. 102055). Cell Press. https://doi.org/10.1016/j.isci.2021.102055
Liu, G., Yang, Y., Li, Y., Zhuang, T., Li, X., Wicks, J., Tian, J., Gao, M., Peng, J., Ju, H., Wu, L., Pan, Y., Shi, L., Zhu, H., Zhu, J., Yu, S., & Sargent, E. H. (2021). Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. In Nature Communications (Vol. 12, Issue 1). Nature Portfolio. https://doi.org/10.1038/s41467-021-24569-9
Wang, W., Xu, M., Xu, X., Zhou, W., & Shao, Z. (2019). Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting [Review of Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting]. Angewandte Chemie International Edition, 59(1), 136. Wiley. https://doi.org/10.1002/anie.201900292
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shweta Yadav, Dr. Bhoopendra Singh

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.